Steering Committee

March 5, 2025

Prelude

We are grateful to live and work in many traditional and unceded territories, covering many regions in Canada.

We are committed to reconciliation and building relationships.

What Does This Mean for ECOROCK?

EcoRock recognises:

- Peace and Friendship Treaties
- Mi'gmaq Nations have not ceded title to the land
- Aboriginal Rights Exist

EcoRock is discussing with MTI the implementation of the Process & Methodology of the Mi'gmaq Rights Impact Assessment Framework

PRELIMINARY CALENDAR

Transport mode from the mine to the port analysis

Three options were studied

- 1. Trucks
- 2. Rail
- 3. Conveyor

The study included:

- Scope of work
- CAPEX comparison (direct costs)
- OPEX comparison (partial costs only)
- Qualitative analysis

1 - Transport Analysis - Trucks

Transport Analysis - Trucks

SCOPE OF WORK SUMMARY

- 150 t trucks (tractor truck + trailer), fleet of 6
- Conveyor (170m long) from the quarry to loading station.
- Conveyor structural support crossing and enclosure above route 134.
- Complete loading (bin, sprout, gates) and unloading (hoppers, feeders) stations
- Gravel haul road (rail dismantling, cut & fill, aggregate base, etc.) to operate 6 hauler trucks of 150t between the stations.
- Truck garage
- Pipe conveyor (475m) from the unloading station to port storage/shipping
- Dust collection at conveyor transfer points including loading and unloading stations with associated utilities and piping
- Electrical supply & distribution, instrumentation and controls

2 - Transport Analysis — Rail Cars

Transport Analysis – Rail Cars

SCOPE OF WORK SUMMARY

- 2 consists of 15 trains running between loading station and port
- Conveyor (170m long) from the quarry to loading station.
- Conveyor structural supports including crossing and enclosure above route 134.
- Complete loading (bin, flasks, gates) and unloading (hoppers, feeders) stations.
- Rail work (repairs, switches, bypass) to operate 4 Shuttlewagons and 30 rail cars between the stations.
- Rail car / Shuttlewagon garage
- Shuttlewagon rail access platforms at loading and unloading stations
- Pipe conveyor (475m) from the unloading station to port storage/shipping
- Dust collection at conveyor transfer points including loading and unloading stations with associated utilities and piping
- Electrical supply & distribution, instrumentation and controls

Side-Dump Rail Car

3 - Transport Analysis — Conveyor

- Closed conveyor 2.5m high, 2650m long and 1m wide
 - 1600-2000 t/h

Transport Analysis - Conveyor

SCOPE OF WORK SUMMARY

- Tube conveyor (14 in diameter, 2650 m length), fully enclosed, noise-insulated and mostly running on the ground
- Conveyor structural supports including crossing above route 134.
- Clearing and grubbing of currently wooded area
- Civil works for above-ground (Queen St.) or underground (Rock Island) road crossings
- Clearing and repairs of railway to serve as base for conveyor
- Dust collection at both conveyor ends with associated utilities and piping
- Sump pump and associated piping at underground road crossing
- Electrical supply & distribution, instrumentation and controls

Transport Analysis - Conveyor

Existing Conditions

ECOROCK
DALHOUSIE

With Conveyor

Qualitative Analysis

Methodology

- Check for fatal flaws
- Identify criteria
- Weigh criteria against one another (min. weight 5%)
- Assess each option vs criteria and generate option rating

	Criteria Importance	Criteria Weight
a-Traffic hindrance	6	16%
b-Noise and dust emissions, vibrations	7	19%
c-Landscape impact (incl. light pollution	3	8%
d-Simplicity (related to quantity of equip	4	11%
e-Power consumption	2	5%
f-GHG Emissions	1	5%
g-Safety	8	22%
h-Job creation	5	14%
TOTAL	36	100%

Qualitative Analysis

Qualitative Assessment Results

Options to use a tube conveyor to transport rip-rap have been identified and are to be investigated

Option No	Option Description	a-Traffic hindrance	b-Noise and dust emissions, vibrations	c-Landscape impact (incl. light pollution)	d-Simplicity (related to quantity of equipment)	e-Power consumption	f-GHG Emissions	g-Safety	h-Job creation	Sum of Scores	Weighted Score	Can handle ground pozzolan	Can handle rip-rap	Comments
1	Conveyor (tube)	5	4	5	4	3	5	5	1	32	4.0	Yes	To be confirmed	e: power for conveyor
2	Rail	2	3	3	2	4	2	2	4	22	2.7	Yes	Yes	a, b: frequent passages d: track, switches, signals, railcars and railcar tractor, conveyor to loading station
3	Trucking	1	1	2	3	5	1	D	5	18	1.8	Yes	Yes	a, b: very frequent passages c: fill on slope to enlarge road potentially visible from afar d: access control, trucks, conveyor to loading station

Summary and Conclusion

	Option 1 Conveyor	Option 2 Rail	Option 3 Trucking	
Qualitative Assessment Score	4.0	2.7	1.8	
CAPEX - Direct Costs (- 20%/+30%) *	35.4 M\$	55.2 M\$	50.1 M\$	
OPEX – Main Costs	0.58 \$/t	1.24 \$/t	1.40 \$/t	
Key Risks	Rip-rap option expected to imply extra costs + technical solution to be confirmed	Social acceptance could be unachievable	Social acceptance could be unachievable	

^{*} Direct costs are for estimated scope only (based on conceptual scope of work and design criteria) and do not include contingency (nor indirect costs)

